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The objectives and challenges

Increase RHIC
luminosity: For Au-Au
at 100 GeV/A by ~10,
from ~7 1026.

Cool polarized p at
Injection.

Reduce background
due to beam loss

Allow smaller vertex

Cooling rate slows in
proportion to y’/2,

Energy of electrons
54 MeV, well above
DC accelerators,

requires bunched e.

Need exceptionally
high electron bunch
charge and low
emittance.
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R&D issues: Theory

« A good estimate of the luminosity gain is essential.

* We must understand cooling physics in a new regime:
— understanding IBS, recombination, disintegration

— binary collision simulations for benchmarking

Detailed Studies of Electron Cooling Friction Force, A. Fedotov, yesterday

Simulations of dynamical friction including spatially-varying magnetic fields, D.
Bruhwiler, yesterday

— cooling dynamics simulations with some precision

Numerical results of beam dynamics simulation using BETACOOL code, A.V. Smirnov et
al, poster

— benchmarking experiments
Experimental Benchmarking of the Magnetized Friction Force, A. Fedotov et al, today

— stability issues
Coherent Dipole Instability In RHIC Electron Cooling Section, G. Wang, poster
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R&D issues: Electron beam

* Developing a high current, energetic,
magnetized, cold electron beam. Not done
before
— Photoinjector (inc. photocathode, laser, etc.)
— ERL, at high current and very low emittance
— Diagnostics

Diagnostics for the Brookhaven Energy Recovery Linac, P. Cameron,

poster

— Beam dynamics issues
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Magnetized e-cooling of RHIC

“COOLING DYNAMICS STUDIES AND SCENARIOS FOR THE RHIC COOLER?, “SIMULATIONS OF HIGH-ENERGY

ELECTRON COOLING”, A. Fedotov et al, proceedings PAC’05,

* An order of magnitude luminosity
increase (from 7x102%6 to about
7x102%7) can be achieved for

5E27  7.5E27 1E28

various ion species and at
various energies

. Gold at 100 GeV/A

Luminosity, 1/cm”™2isec

| 2.5E27

» Solenoids=2x40=80m, B=5T,
electrons g=20nC, emittance
50um, energy spread 3x10-4.
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* The integrated luminosity under ° -
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cooling is calculated from the
percentage of the beam burned

during 4 hours, for 3 IPs, 112
bunches, beta*=0.5 meters

1E29 1.5E29 2E29

%
* The limitation may be either 5 )
beam disintegration (gold) or .gg\@pper at 100/GeV/A
beam-beam parameter (copper). 39| .

Luminosities per IP in cm-2sec! vs. time in seconds
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Beam-beam, bunch length

* The bunchlength and ¢ —
beam-beam g8 —— Copperat 100 GeV/A
parameter can be %W
controlled.

° COOIIng can be done ) 4500 0000 13500 18000
also below the critical Reference ime fzecl
number.
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Challenge in the electron beam

TN__=1.210"

« Magnetized cooling is not easy:

Murnber [%)]
1|5 I

» Total solenoid length 30 to 60 m. i\

* Solenoid error limits benefits! e e

* The electron beam is very W
challenging: 20 nC with strong | Ne=3{10%
magnetization (2 Tmm2to 5T
" e L

Taking the following parameters of RHIC: N.=10%, 11=0.0078, A, =20, g,=0.2,
and assuming that the cooler will have magnetized cooling logarithm A_=2 one
gets critical number of electrons about N_.=1-3*10"1, depending on expressions
Used to describe IBS and friction force.
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Laser photocathode RF gun:
Key to performance

Left: 1 72 cell gun designed for cooler.
Below: V% cell gun prototype which is
Under construction.




Ampere-class SRF gun




Diamond amplified photocathode
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Z-bend merging optics for ERL.:
Emittance conserved

Z-bend compared to dog-leg and chicane: =

+_
.
20

7 Dog-l;%g

14 0 1 2 327714 5 6 7
12 s,
rom the SC 05-20 MeV o J \\ i
o o NI
2.5MeV f : o
i Il LA e
& 4 2
R | R e A SO = Kok ol b B
Solenoid golenmd ; < emmatseco
0 * L +
0 1 2 3 4 5 6 7
Length, m



Layout of the injection system
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Performance out of linac
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Parameters for magnetized beam

Charge 20nC
Radius (Transverse uniform distribution) [ 12mm
Magnetization 380mm.mr

Longitudinal Gaussian distribution

4degrees, 16ps

Maximum field on axis of gun cavity 30MV/m
Initial phase 30deg.
Energy at gun exit 4.7MeV
Energy spread at gun exit rms 1.87%
Bend angle 10degrees
Energy at linac exit 55MeV
Final emittance (normalized rms) 35mm.mr
Final longitudinal emittance 100deg.keV
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Start point: Beam envelope close to the invariant envelope,

Injector Optimization

chromaticity compensated using time dependent RF fields. 4-D
emittance: 35 um

C++ Optimizing with 7 parameters uses Powell method or Simplex
method and PARMELA. 4-D emittance: 28.5 um
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Lattice for magnetized beam

Gun £4-bend merger

0 —H—HH
RF frequency: 703.5 MHz| ERL

Charge: 20nC/bunch o}
Repetition rate: 9.4 MHz 7,

A
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The possibility of non-magnetized
electron cooling for RHIC

Sufficient cooling rates can be achieved with
non-magnetized cooling.

At high vy, achievable solenoid error limit fast
magnetized cooling.

Recombination is small enough
— Reduced charge
— Larger beam size

Helical undulator can further reduce
recombination®

*Suggested by Derbenev, and independently by Litvinenko
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The use of a helical undulator

+ Large coherent g  I34B4
velocity can be y Y
achieved toreduce |, _ % | _|nfm
recombination. ° 2r 2

e Small circle radius Take A=5cm, B=20 Gauss, R=5 cm, 1=72 Amp

can be made with ~ Then=0.7.um, §,=180m
low field N

« Undulator provides R recombination
focusing of the 77//NYY) ) Lifetime: i
electron beam More than enoug

e
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Non magnetized cooling

Rms momentum spread of electrons =0.1%

Rms normalized emittance: 2.5 microns

Rms radius of electron beam in cooling section: 2 mm
Rms bunch length: 5 cm

Charge per bunch: 5nC

Cooling sections: 2x30 m

lon beta-function in cooling section: 200 m

IBS: Martini's model for exact RHIC Iattice

_Azne‘Z” _['— \7i—\7e

m FER v
Ve
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Friction force given by: —f (v,)d’v,




Non-magnetized cooling
of gold at 100 GeV/A

o
8 @
=]
PR LYY
g elrriarige = ™ "
E =
= =
£ R e e =
2 S = — ] E
l'ﬁ' [in}
Bunch length
=] = T T
] 3600 7200 10800 14400 0 28680 5760 8640 11330 14400
Reference time [zec] Reference time [sec]
[

& 1 Bunch|profiles

™
g ] [y
E S
2 —
5
v E ]
5 =
c
£ —
3 -

5 )
a I T T T T T T I

T
7200 10800 14400 -4 0 4
Reference tima [sec]

GG | C N

4



Beam loss
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Cooling at 2.5 nC and 2 um

_using Isotropic velocity distribution
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The electron machine R&D

Beam dynamics

Photocathodes, including diamond
amplified photocathodes

Superconducting RF gun
Energy Recovery Linac (ERL) cavity
ERL demonstration
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Ellipsoid bunch shape

Cecile Limborg-Deprey, Proc. 2005 FEL Conference.

TTF2 gun: 40 MV/m , 1nC, Elliptic bunch generating stage

Ethermal = 0-43 mm-mrad /mm
s Chirped
TV 0 = Ettipsaid | Input (1.7 nm/mm)
—— Beer Can
]l
= I R R N ]/ next stage
Z grating 1 rotated by 0
£
© 0.5 bl e
grating 2
5 a0 5 o0 5 10 ‘X,t" mask
Position [ps] 180
prism 1
Eprojected — 1-13 MM-mrad
Eorojocted = 0-67 mm-mrad 2 stages OK, 4 very good.

S BNL



Non-magnetized beam

 The combined -
use of ellipsoid -
bunch, high

electric field

Laser profile on cathode and bunch out of cathode

and no
magnetization
results a good
emittance

a0

A5

0.

vws. phi-phis
=10.0

=. 43

Io.a

% ws. phi-phis
: =100

L I

Charge/bunch Maximum radius | rms radius
(nC) (mm) (mm)

2.5 4 1.77

3.2 4 1.77

5 6 2.65

10,1 £.n

Bunch length: 16degrees (63ps) from head to tail.
Lunch phase: about 35deg.
Maximum field on axis: 30MV/m

Energy out of gun 4.7 MeV B P*J '



Emittance results

* Much room for T
further =
optimization. N N

 Performance " 32nComse
satisfactory for 0w m w0 o w mw
non-magnetized Charge/ [ RUS normalized emitance
. (nC) um
cooling. s 17
3.2 2.0
5 2.9
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Longitudinal emittance

* The longitudinal
emittance is 300 :
degree*keV s . . oy

« 39 harmonic /
correction reduces .. Lo
it to less than 50 Z (deg)
degree*keV or
about 7*10°

ive energy (keV)

;

phi-phis
ip
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R&D ERL under construction

To study the issues of high-brightness,
high-current electron beams as needed for
RHIC Il and eRHIC.
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SRF cavity for ampere current.
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